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Abstract— General linear time-varying (LTV) sys-
tems are addressed. They arise as small-signal mod-
els in nonlinear electronics. It is shown that the con-
ventional characteristic equation for constant systems
has to be replaced by a generalized one with the ear-
lier introduced dynamic eigenvalues as unknowns. A
simple example clearly illustrates the difference be-
tween the conventional eigenvalues and their dynamic
counterparts.

I. INTRODUCTION

Linear time-varying (LTV) systems arise as small-
signal models in nonlinear circuit theory [1], [2]. Re-
cently, they were successfully applied in predicting
the local dynamic behavior of class-B amplifiers [3],
oscillators [4] and dynamic translinear circuits [5], re-
spectively.

In this article, general LTV systems are addressed. In
particular, the generalized characteristic equation is
formulated with the earlier introduced dynamic eigen-
values as unknowns. Together with the associated
dynamic eigenvectors, they constitute the exponen-
tial modal solutions as first proposed by Wu [6], [7].
At this place it is remarked that we have adopted the
adjective dynamic to distinguish LTV concepts from
their conventional (static) antipodes [8], [9].

As scalar LTV systems are concerned, Kamen [10]
obtained modal solutions by factoring the associated
polynomial differential system operator. For the sec-
ond order case, the factorization was explicitly given
in terms of a solution of the Riccati differential equa-
tion.

A related approach was followed by Zhu et al. [11],
[12]. These authors found modal solutions based
on a scalar differential operator factorization due to
Cauchy-Floquet. Inspired by the classical series and
parallel canonical realizations of constant scalar sys-
tems, they introduced two types of (interrelated) time-
dependent eigenvalues, each type satisfying nonlinear
constraint equations. Then, the scalar system is writ-
ten in vector form with an associated time-dependent

Frobenius companion system matrix. However, in
transforming this particular system structure to a gen-
eral one, serious constructive problems were encoun-
tered [13], [14].

In contrast with the work cited above, we start right a
way with general LTV systems that automatically im-
ply scalar LTV systems as a special case. Therefore,
our results are more general and transparant.

The approach presented here, is based on the Riccati
transformation as described in [15]. Essentially, it ef-
fectuates an appropriate order reduction and a subse-
quent decoupling of the original LTV system.

In Section II the modal solutions of general LTV sys-
tems are introduced. They are characterized by a vary-
ing amplitude-vector and a varying frequency, respec-
tively. Next, it is shown that each mode satisfies a
dynamic eigenvalue problem. In this connection, the
amplitude-vector and frequency manifest themselves
as unknown dynamic eigenvector and dynamic eigen-
value, respectively.

In order to solve the dynamic eigenvalue problem, in
Section III the LTV system is gradually triangularized
by successive Riccati transformations. Under the con-
straint that a lower order Riccati differential equation
is satisfied, in each step a next dynamic eigenvalue
appears on the main diagonal. In Section IV the com-
plete set of (quadratic) Riccati equations of decreas-
ing order is recognized as the dynamic characteristic
equation. From it, the ordered set of dynamic eigen-
values follows by successive computation.

Finally, Section V presents an elementary example
that clearly illustrates the difference between the con-
ventional and dynamic eigenvalues, respectively.

(??) belonging to a particular input
II. THE DYNAMIC EIGENVALUE PROBLEM

Consider the n-dimensional homogeneous LTV
system

T=At)z . (1)



We are looking for elementary solutions of the modal
form [9], [16], [17]

z(t) = u(t)exp[y(t)] 2)

where u denotes a varying amplitude-vector, while
the varying phase vy defines a varying frequency A as
t
At)=4(t) with ~(t) = [Nr)dr . (3)

0

Substitution of (2) in the state-equation (1) yields the
dynamic eigenvalue problem [9], [17]

[A() = AOTu(t) = () 4)

in which I denotes the identity matrix. In this con-
text, the modal quantities w and A are called a dy-
namic eigenvector and a dynamic eigenvalue, respec-
tively. In order to solve (4) for u and A, system (1) is
subjected to the time-dependent coordinate transfor-
mation

r=R(t)y . Q)

where y = y(t) is the new unknown. Then, sys-
tem (1) goes into another LTV system, namely

y=B{)y , ©)
in which the system matrix B is given by [18]
B=R 'AR-R 'R . (7

It is easily shown that system (1) and (6) share the
same dynamic eigenvalues. Therefore, the system ma-
trices A and B are called dynamically similar [9]. In
the next section, we construct a coordinate transfor-
mation matrix R by which system (1) is gradually
triangularized. As shown earlier, in each triangular-
ization step, a next dynamic eigenvalue appears on
the main diagonal. Once the system is fully triangu-
larized, the complete dynamic eigenvalue-spectrum is
known. Then, the associated dynamic eigenvectors
are easily found by straightforward integration and
back substitution [17]. This motivates our exclusive
attention for the relations which have to be satisfied
by the dynamic eigenvalues.

III. TRIANGULARIZATION BY THE
RICCATI TRANSFORMATION

In this section, we develop an algorithm by which
system (1) is gradually triangularized. To that aim, we
adopt the following notation

:i?k = Ak(t).’ltk for k= n,n— 1,...

3,2, (8)

where k refers to the dimension of the state-vector
xr, = xx(t) and the system matrix Ay, respectively.
Next, in any iteration step A is partitioned as

Dk 1) br_1(t)
ck (&) di-a(t)

Here, Dy is the (k — 1) left upper square block of
Ay, by_q and ¢, are (k — 1) column vectors, re-
spectively, while dj;_1 denotes a scalar (1" stands for
the transpose). We now perform in any iteration step
the coordinate transformation (cf. (5))

o, =Prt)yr

with y, = yx(¢) and where Py, is taken as the Riccati
matrix [15]

Ag(t) = )

(10)

(11)

ORI

P/Fil (t) 1

in which I,_; denotes the (k—1) identity matrix while
Pr—1 is a (k — 1) column vector with p; a scalar, re-
spectively. Then in analogy of (6), we arrive on ac-
count of (7) at the following block triangularized LTV
system

. Ap_1(t) br_1(t)
where we used
_ I._ 0
P() = {—p%’?ll(t) 1] K

and provided that py_1 = pi_1(t) is any solution
of the (quadratic) Riccati vector differential equation
[19]

T
bip—1 =
—pi Dy +el —plibeapl_ i1y,
(14)

while the dynamic eigenvalue A\, = A\ (t) is obtained
as

Mo =dp_1— pi_1br (15)

Next, let the first (k — 1) elements of y; define the
updated state-vector x;_1, then the updated system
matrix Ag_1 in (8) follows from the result obtained
in (12) as

A1 =D+ bapii (16)
At the end of the iteration process, we finally arrive at



where b; defines a scalar.
By introducing the n-th order matrices Pq(lk) as

o= "0 0]

it is readily observed that the Riccati matrix R,, =
R, (t), given by

(18)

Pe

R, =PMPr-1 | PpL (19)

indeed transforms system(1) into a fully triangular-
ized system (6) with diagonal elements {1 (%), A2(t),

()}
Finally, it follows from (11), (18) and (19) that

detP¥) (1) =1 hence detR,(t)=1 . (20)

As a consequence, the Riccati transformation is trace
preserving, thus

trace [A, ()] = > Ai() (21)
=1

IV. THE DYNAMIC CHARACTERISTIC
EQUATION

Substitution of the expression for the dynamic
eigenvalues (15) into the Riccati equation (14) yields

b =pl 0wl —Di 1) + ¢l (22)

If this expession is augmented with (15) we obtain

71 [[MIk—1 — Dj—1]
UV = g _cT
k—1

—bp_1

(A —dg-1)]
(23)

where the k-dimensional row vector 'vl;f is given by
v = [pe1 —1] 24

In view of the displayed partitioning of Ay in (9),
equation (23) can be put together as
Oy (1) = vy (8) ()L — Ag(t)] (25)

Next, by taking the transpose of (25), we finally ob-
tain with (15) the following complete set of (n — 1)
equations (k =n,n—1,...,2)

[AT () = Me(0)T]ve(t) = =0k (t)  (a) }
(26)

Ak(t) = dp—1(t) — pil_ (t)br—1(t) (b)

For time-invariant systems, the Riccati equation (14)
admits a constant solution for pi_1. Then, v, = 0
while we always have v, # 0. As a consequence,

equation (26.a) reduces to a homogeneous linear al-
gebraic equation. It has non-zero solutions if

det [A] — \I;] =0fork=n,n—1,...,2. 27)

Since the system matrices in (8)and (12)are simi-
lar for constant systems, they have identical (con-
ventional) eigenvalues. Hence, by repeated use of
det [Ap — NIg] = det [Ag_1 — Mx_1] (A — A) =
0, it follows that the familar characteristic equation
for system (1)with constant system matrix, namely
det [A,, — AI,,] = 0, is satisfied by the eigenval-
ues A = )\ as they are defined in (26).For this rea-
son, equation (26)constitutes the dynamic characteris-
tic equation associated with system (1).It is the gen-
eralization of its conventional antipode for constant
systems.

In summary, starting with k& = n the dynamic eigen-
values A(t) are for decreasing k computed as fol-
lows: 1. substitute (22.b) in (22.a) and find a partic-
ular solution py_1(t) for the resulting Riccati equa-
tion, 2. find Ak (¢) by back substitution of py_1(t) in
(22.b) and finally 3. find A;(¢) from the trace (21).
The result is the ordered set of dynamic eigenvalues

{)\1 (t)v )\Z(t)7 e 7)\n(t)}

V. CONVENTIONAL VERSUS DYNAMIC
EIGENVALUES

As an example, consider the two-dimensional LTV
system

. *WOtaD(th) 1
= 0 wotan(wot)| * (28)

in which wy is a positive constant. By direct inspec-

tion, the time-varying but conventional eigenvalues of
the system matrix are

A1(t) = —wp tan(wot) , A2(t) = wo tan(wot) . (29)

Thus, for almost any time we always have one real
positive eigenvalue. In the conventional perspective
this would predict unstable system behavior. Yet, it is
easily verified that

z = [wy ' sin(wpt) (cos(wot)) ]T (30)
is a stable solution of (28). In fact, system (28) turns
out to be a triangularized LTV state-space description
of the (neutrally stable) harmonic oscillator [17]

. 0 1
Y= [wg O]y ) (31)



with conventional eigenvalues A1 2 = $jwo.

The example underlines the well-known fact that the
conventional eigenvalues give no indication of the sta-
bility properties of an associated LTV system. Except
for a triangular or diagonal LTV system, the eigenval-
ues of the system matrix and the eigenvalues of the
system itself (the dynamic eigenvalues) do not coin-
cide, as they always do for constant systems.

VI. CONCLUSIONS

The local dynamic behavior of nonlinear dynamic
system solutions is described by LTV equations. As
general LTV systems are concerned, the dynamic
characteristic equation is formulated. It is recognized
as the complete augmented set of (quadratic) Riccati
differential equations of decreasing order, necessary
for triangularization the LTV system. From it, the dy-
namic eigenvalues can be successively computed. As
in the classical context where an algebraic characteris-
tic equation has to be solved, solutions of its dynami-
cal counterpart are not per se easy to obtain. However,
its theoretical significance is obvious.
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